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BERNOULLI ENTHALPY
A FUNDAMENTAL CONCEPT IN THE THEORY OF SOUND

John E. Yates and Guido Sandri
Aeronautical Research Associates of Princeton, Inc.
50 Washington Road, Princeton, New Jersey 08540

Abstract

A general theory of aerodynamic sound
is developed. The basic equations of fluid
mechanics are expressed in terms of veloci-
ty, enthalpy and entropy, and the velocity
field is separated into irrotational and
rotational parts with the latter being in-
compressible. By analogy with the de-
seription of sound in a homentropic-
irrotational flow, the radiative part of
the sound field is characterized by the
velocity potential, ¢ A fundamental new
concept, Bernoulli enthalpy, # , is intro-
duced, again by analogy with homentropic-
irrotational flow. It is shown that the
"source" of the radiative sound field is
the substantive rate of change of the
Bernoulli enthalpy. The detailed kinematic
and thermodynamic mechanisms of sound pro-
duction and interaction are ultimately con-
tained in the source of the Bernoulli #H
field. The latter satisfies a Polsson
equation subject to the boundary condition
that the &/ field acquires appropriate con-
stant value(s) when the vorticity and the
entropy gradient vanish. Two basic con-
ceptual issues of the modern theory of
sound are resolved. First, the radiative
sound is clearly separated from the source
of sound with each part characterized by
its own scalar field. Second, the Bernoulli
source of sound 1Is compact; 1.e., it 1is
confined to the region of rotational non-
homentropic flow. The near field sound
pressure is in general a nonlinear function
of the ¢ and ¢ fields and is not
separable except in the linear case.

A detailed discussion and interpre-
tation of the general theory is given with
emphasis on the production of sound by
turbulent flows. It 1s found that an im-
portant dipole source of the Bernoulli
field can result by passing turbulence
through a highly curved potential flow.

The dominant source of Bernoulli enthalpy
in low-speed noncurved flows is the classic
Lighthill gquadrupole (1,2,3).

An analogy between the
and the pseudosound concept
is given. The &/ field is analogous to
Ribner's pseudosound, while his acoustic
field is defined in terms of our velocity
potential, ¢ The experimentalist is
challenged to measure the two parts of the
pressure by measuring the separate ro-
tational and irrotational components of the
velocity field.

present theory
of Ribner (4)

The linear problem of sound inter-
acting with a mean shear flow is formulated
with the new theory. It is compared

Copyright © American Institute of Aeronautics and
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briefly with the formulation of the same
problem based on the Landahl-Lilley
equation (5). It is shown that the inter-
pretation of the basic equations in terms
of acoustic and vortical modes (in the
homentropic case) can lead to a linear
coupling between the sound and vertical
flow. This mechanism is eliminated in the
third-order Landahl-Lilley formulation where
the acoustic and vortical modes are coupled
into a single pressure variable that is
termed acoustic.

A numerical example of the interactive
Bernoulli field is given for the case of a
plane wave impinging on a Gaussian plane
jet. At small incidence angles to the jet
axis, the Bernoulli source has the appear-
ance of a dipole while at large angles it
has the appearance of a monopole.

L. Ifitroduciion

Since the pioneering theoretical
foundation of Lighthill (1,2,3), there have
been many contributions tu the modern theory
of aerodynamic sound. Much of the work
immediately following the classic Lighthill
papers was aimed at refinements and/or ex-
tensions of his basic theory (e.g., 6,7)
while others, including Lighthill himself,
attempted direct application of the theory
to the problem of estimating noise (8). It
is not our intent here to give an extensive
review of historical developments. Rather
we focus on a few of the fundamental efforts
that have attempted to clarify the basic
conceptual issues in the theory of sound.

In particular, we confine our remarks to the
work of Lighthill (1,2,3,8), Ribner (4),
Crow (9), Lilley (5) and Doak (10).

A basic conceptual problem with all of
the modern sound theories is that no clear
cut distinction has been made between radi-
ative sound and sound source in the near
field. Considerable discussion has evolved
around the Lighthill "source." It is well
known that all convective and refractive
effects are disguised in the "source" while
the radiative field is governed by the
linear wave operator for a stationary
medium. For this reason the basic Lighthill
theory has been termed the "acoustic
analogy." The equation is "exact" but the
approximations and interpretations of it
are not.

Ribner (4) made an attempt to separate
"radiative" from "source" sound when he
introduced the concept of pseudosound. By
separating the pressure into two parts and
postulating a Poisson equation for the near
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field (pseudosound), he was able to derive
a wave equation for the radiative part with
the near field as source. This is closer
to the "truth," as we see 1t, than any
theory on the market. However, it is not
appealing from the polnt of view that we
would like to derive our field equations
from fundamentals. One cannot be quite
sure that the postulated pseudosound {s the
pressure that would actually be measured in
the near field. Also, there is some
question about the compactness of the
pseudosound field (see below).

More recently, Lilley (5), following
the approach of Phillips (11) and Landahl
(12), has developed a single third-order
equation for the pressure fluctuation. It
presumably contains all convective and re-
fractive effects on the left-hand side and
all quadratic "source" terms due to turbu-
lence and mean shear on the right-hand side.
Our objection is that the equation mixes
the acoustic mode with the vorticity mode
(13). It does not really isolate the source
of the radiative part of the acoustic field.
The conclusion based on the Landahl-Lilley
equation (5,10) that there can be no linear
coupling between the acoustic pressure field
and the turbulence is a direct result of the
choice of dependent variable (in this case,
pressure). The very mechanism whereby
linear coupling can occur is buried in the
left-hand side of the equation. 1In the
present work we show that the acoustic mode
can interact linearly with the mean shear
flow and perturbation vorticity to produce
radiative sound.

The more recent momentum potential
approach of Doak (10) seems to further con-
fuse the issue of "source" identification.
Using the Helmholtz decomposition of the
momentum flux, Doak derives a fourth-order
equation for the momentum flux potential
with the solenoidal part appearing on the
right-hand side. He submits that the ro-
tatlonal-solenoidal part can be identified
as the rotational part of the turbulent
field and, hence, part of the "source."

The most obvious objection to this approach
is that the momentum flux can be rotational
even though the velocity field is irro-
tational. Thus, via Doak's method, the
description of sound in a compressible but
otherwise homentropic-irrotational flow
would require both a scalar potential and
vector field. Furthermore, the theory would
indicate that the vector field acts as a
"source" for the momentum potential. This
state of affairs is totally unacceptable in
a reglion where there can be no aerodynamic
sources of sound.

Another conceptual problem with modern
sound theories is that the various "sources"
that have been proposed are not compact;
i1.e., confined to the region of rotational
nonhomentropic flow. This has not been a
serious practical problem since one can
usually resort to asymptotic analysis to

localize the "source'" in the region of turbu-

lent flow. However, the issue has been dis-
cussed In several of the fundamental papers

with a great deal of mutual criticism.
Lighthill (8, Appendix B) attacked Ribner
for using a noncompact source, while Crow
(9) criticized both theories for having non-
compact sources apparently giving Ribner

the edge for being the least compact. He
uses the machinery of singular perturbation
theory in an effort to derive the conditions
under which one can use the Lighthill source.
All of thHe early discussions of this issue
point to the need of a theory with a true
compact source of radiative sound.

n

Crow (9) made a modest attempt to con-
iliar

struct such a theory. He used the fam
Helmholtz decomposition of the velocity
field in terms of irrotational and sole-
noidal parts. He also wrote down an en-
thalpy expression, H , that is close to
the Bernoulli enthalpy introduced in the
present work. He was not successful, how-
ever, in isolating the acoustic from the
source field except for the linear case.
Also, he did not seem to recognize the
essential compact nature of the H field.

In the present work we develop a
general theory of sound in which the radi-
ative and source fields are clearly sepa
rated and in which the source is compact.
The point of departure is analogous tec that
of Crow (9). The two basic differences
in the choice of boundary conditions for
the Helmholtz decomposition of the velocity
field and the definition of the compact
Bernoulli enthalpy field. An essential
theme of the present work is that two scalar
fields are necessary to describe the pro-
cesses of radiation and prcduction of sound
without ambiguity.

II. The General Theory of Sound

Basic Ecuations

Consider the equations of motion for a
viscous heat conducting gas. We choose the
enthalpy h and entropy s to be the pri-
mary thermodynamic variables. The conti-
nuity, momentum and energy equations are:

Dh 2 > ¥ . ra 1y
= + a“ div v = £(¢ ~ Q) = |
Dt 0(
>
> 5 >
DV 4 srad h = T prad s + V.1
Dt 0
(2.2)
Ds 1 \
st 8 Sed® = ) (2.3)
Dt cT(
where
*
e + .
o =1 grad v viscous dissipation
e >
Q@ = div q - bulk heat addition
%
q = heat flux vector
3
T = viscous stress tensor
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the well-known Helmholtz decomposition of
an arbitrary vector field into irrotational
and rotational components (16). We let

V= grad ¢ + U G200
where ¢ has the same meaning as it did ;

for homentropic-irrotational flow. The u
field is incompressible; i.e.,

div i =0 (2.18)
Furthermore, we demand gs a boundary con-

dition that the field u be zero if and
only if the vorticity vanishes; i.e., if

curl v = curl u (2.19)

o
w
then
> >
w =0 1if and only if u =0 . (2,209

The important point about the decomposition
(2.17) 1is that the velocity field is being
separated into rotational and irrotational
parts. The fact that @ 1is incompressible
does not imply that part of the potential
field cannot also be incompressible.

Substitute (2.17) into the continuity
and momentum equations. We get

20 4 57 = %(¢ = ey 2o

and

3¢ 1 2
grad (h + 5% * 3lerad 6| )

e
> 2
=V x o - grad(4 - grad ¢ + u“/2) - %%
>
.
+ T grad s + di; % {2289

If we compare the last equation with the
corresponding result in a homentropic-
irrotational region (see (2.13)), we can
interpret (2.22) as saying that the
Bernoulll constant is no longer a constant.
Thus, we define the fundamental unsteady
enthalpy variable

no
n
(&)
~

2
&Y = h + %% + %[Frad 6| {

In regions H; and H; , this enthalpy is

constant and equal to the appropriate value
of the Bernoulli constant at infinity. In

region R , ¢¥ 1s a basic variable and is

invaluable for the description of the

source of sound. In the remainder of this
work we shall refer to @ as the Bernoulli
enthalpy.

With the definition (2.23), we can

interpret (2.22) as an equation for the
Bernoullil enthalpy. The integrability con-
dition for (2.22) is that the curl of the
right-hand side must vanish. This leads to

the vorticity transport equation:

Q's > > - > 2
T - W grad u + w * grad(grad ¢) - wV ¢

x
=

+ grad T x grad s + curl (Ql%_l)
(2.24)

The Bernoulli enthalpy satisfies a Polisson
equation obtained by taking the divergence
of (2.22). After some manipulation of terms
on the right-hand side, the resulting
equation is

e 2
2 3°u"u 3 j 3
VeH = - = u —1—)

axiaxJ SxiaxJ ( axi

J ¢
= “EE(RET 29{)+ aiv(T grad s) + div(div T)
axY *9x~ 9dx P
(2.25)

We obtain the fundamental equation for
the potential field in region R by sub-
stituting h from (2.23) into the continuity
equation (2.21). We get

DEAG T 2 20 0 DY « o
% (at + 5lerad ¢ ) - 2V = = - E(¢ -Q)
(2.26)

n
n

Finally, the pressure is obtained by sub-
stituting h 1into the state equation (2.6);
, - S

p=0p (_ 3% _ %]rrad @Ig +& ﬂ

The basic theoretical development is com-
plete. We summarize below the set
equations for ¢ ,9y , w , S and the
pressure p

The Sound Equations

2_(39 + l££§£~9 ) - aiy:f = Ej?_ l4¢ - )
t 2 3 ‘ Dt 0 it
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III. Discussion and Interpretation

The conceptual beauty of the sound
equations (2.28) is perhaps not immediately
evident. Here we discuss these equations
in the light of certain self-evident truths
and deductions based on previous models and
studies of the aerodynamic sound problem.

First, we point out the obvious fact
that the sound equations are exact. We
have chosen a "natural" set of variables
for the description of sound and have re-
written the fluid equations of mntion in
terms of those variables. No "model" of
the sound problem is being proposed.

Bernoulli Enthalpy as the Source of Sound

There are two essential variables re-
quired for the description of sound in a
rotational flow; namely, the velocity
potential ¢ and the Bernoulli enthalpy

Only ¢ 1s a true "acoustic" variable
in the sense that it satisfies a wave
equation capable of radiating sound energy
to the far field. The "source'" of the
radiative sound field following a fluid
element is the substantive rate of change
of the Bernoullil enthalpy. Locally, the
sound field (pressure) is a nonlinear
function of the radiative ¢ part and a
second part due to the Bernoculli enthalpy.
In the linear case, these two parts of the
pressure field are additive via the state
equation. The second part of the linearized
pressure 1is directly proportional to the
Bernoulli enthalpy. A direct analogy can
be made between this "Bernoulli pressure"
field and the concept of pseudosound (see
below).

Our fundamental acoustic equation also
shows that viscous dissipation and heat
conduction (or bulk heat addition) are also
direct sources (or sinks) of sound. For
turbulent flows at moderate temperatures,
the thermal source term should indeed be
negligible. Lilley (5, Ref. 13 quoted
therein) has argued that since turbulent
dissipation is balanced by production and
convective terms in a turbulent flow, it
could be an important source of sound. At
high wave numbers, on the scale of the
viscous dissipation, this is most 1likely
true. In fact, the entire right-hand side
of our acoustic equation should vanish at
high wave numbers and provide a high fre-
quency cutoff of the radiative field. How-
ever, over a large part of the turbulent
energy bearing spectrum the fluctuating
Bernoullil enthalpy field should dominate as
the primary source of sound. From another
point of view, the dissipative source term
in the acoustic equation 1is precisely the
source of entropy. It is penerally be-
lieved that except for very hot or very
high Mach number turbulent flows that en-
tropy 1s essentially constant along particle
paths. Therefore, the assumption of local
isentropic flow 1s consistent with the
notion of neglecting the dissipative sound
source in the acoustic equation. We remark

that these argumen®ts should be valid even
for Mach numbers well into the supersonic
range.

An important feature of the sound
equations is that the "Bernoulli source"
of the radiative ¢ field is compact; i.e.,
it is confined to the rotational turbulent
flow regime.* The Bernoulli enthalpy field
must acquire an appropriate constant value
on the dividing boundaries S; between
regions R and Hy From a practical
standpeint, it may be necessary to invoke
this condition via asymptotic analysis.
However, variations of the # field must
not be permitted to permeate the homen-
tropic region. In other words, the¢¥
field must reach a constant value on
roughly the same scale as the vorticity or
the entropy gradient at the boundary of a
turbulent flow field. Crow (9) addressed
this point in his critique of the Lighthill
theory. It is unfortunate that Crow did
not seem to recognize the compact property
of the Bernoulli variable H that he
introduced (see Section 5 of Ref. 9). A
basic point of his work is that the Light-
hill source term is not rigorously compact
in the sense used here. Crow was able to
show by asymptotic arguments, however, that
one may consider the source to be es-
sentially the local turbulent flow if the
wave length 1s sufficiently large compared
to the geometric extent of the turbulent
region. Asymptotic arguments are not
needed to argue the compactness of the
source if the essential role of Bernoulli
enthalpy as the source field is recognized.

The Source of Bernoulll Enthalpy

The Bernoulli enthalpy satisfies a
Poisson equation (see (2.28)) subject to
the boundary condition, # = constant , on
the bounding surface of the rotational-
turbulent flow. We interpret the right-
hand side of the Poisson equation, presumed
to be given, as the "source" of Bernoulli
enthalpy and ultimately of the radiative
sound field. For the sound production
problem, the only equations needed in
(2.28) are those for ¢ , ¥ and the
pressure p The vorticity transport and
entropy equations are, in general, im-
portant only for maintaining the basic
turbulent flow. An implicit assumption is,
of course, that the turbulent flow 1s more
or less passive to the generated sound
field. The intense sound problem would
require a knowledge of the potential vortex
and entropy interaction.

The source terms in the Bernoulli en=

thalpy equation are arranged in "approximate

order of increasing importance as we go

from low speed to high speed flows. We use
the term approximate because flow speed 1is
not the only consideration in ordering the

';ho iissipative and heat sources are not
rigorously compact. 1In fact, they are
the terms that ultimately lead to
dissipation of the far field.

S ———

A 1

"




S

source terms. For smooth low speed flows
at ambient temperature, the dominant source
term is the rotational-incompressible
quadrupole:
204 -3

_———3‘;”J (3.1)

9x 9x
By now we might call this the classic Light-
hill quadrupole, it having first been
pointed out by Lighthill nearly 25 years
ago. A subtle difference between the
source term (3.1) and the Lighthill source
is the absence of density and hence the
interpretation of the source as a stress.
Here, the source is an energy density or
pure kinematic quantity that produces the
Bernoulli enthalpy field. The mechanism
whereby the quadrupole Bernoulli source
produces a radiating quadrupole sound field
is also slightly more subtle than in the
acoustic analogy of Lighthill. It is, in
fact, more closely akin to the pseudosound
concept of Ribner (see below). A key point
is that the immediate near-field of a fluid
element has the quadrupole character (3.1)
independent of far-field arguments.

We must emphasize the fact that the
& field only has quadrupole or dipole
character in a local sense. It is a true
source with no far field. However, the
substantive derivative of the local source
field will produce a radiative field of the
same order plus a higher order pole due to
the convective derivative. This distinction
in multipole terminology must be remembered
when referring to the source and radiative
fields.

The second and third terms on the
right-hand side of the Bernoulli enthalpy
equation are, respectively, quadrupole and
dipole in character:

g AN (u-1 QQ_) quadrupole (3:2)

axiaxﬂ axi
J
2. (25 22 aipole (3.3)
ax- axt dx

These source terms result from the inter-
action of the potential flow with the
rotational flow. In at least two important
cases, these terms could become more im-
portant than the basic incompressible
quadrupole. First, if the flow becomes
highly compressible, the potential flow
field can become as significant as the ro-
tational-incompressible field. Second, if
the potential flow is highly curved as in
the flow over abrupt geometric changes,
there could be an intense dipole source via
(3.3) as turbulence is convected through
the curved region.

From 4 standpoint, the
second case is probably much more signifi-

cant than the f1 « dn Tacts 1t could
L]
explanation of the intense
tted from a own flap, or a
a solid s e We c¢an

e of the

well
0 1

1

s

1

¥
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urfa
the magnitud

dipole source term is at least comparable to
(if not larger than) the two quadrupoles in
the flow around sharp corners. The ad-
ditional radiative efficiency of the dipole
could then lead to the complete dominance

of this turbulence/potential flow inter-
action term in the far field.

The last two terms in the Bernoulli
enthalpy- equation are also dipole sources:

div (T grad s) (3.4)
>
div 1

div (—p—) (3.5)

The first term (3.4) is due to entropy
gradients and/or fluctuations, while the
second term (3.5) is due to fluctuating
viscous stresses. Either high Mach nu
or some strong source of h
is necessary before the first term be
of any consequence in the production
sound. We note, however, the clean
ration of the entropy source from
kinematic sources in the present fo
lation. Fluctuating viscous shear
are known to be inefficient sound pr
so that the last term, (3.5), is
negligible. The fleow around

may be an exception.

eating or

The Pseudosound Analogy - An Experimental

Challenge

In his 1964 opus on the generation
sound by turbulent jets, Ribner (4)
cisely summarizes his concept of a ps
sound near field and how it generates an
acoustic far field. A direct analogy can
made with the present study.
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Equation (3.9) is Ribner's "Dilatation
Equation” and (3.10) is his "pseudosound
equation," thus completing the analogy.

The separation of the pressure into a
near field and far field and postulation of
a Poisson equation for the near field is a
simple and perhaps useful intuitive concept.
We feel, however, that the natural sepa-
ration of the pressure field that results
from the dichotomy of the velocity field is
conceptually more attractive, and theoreti-
cally more sound. It is not clear t?at
Ribner's postulated pseudosound (o or
the Bernoulli field & for that matter is
one and the same as the near-field pressure
given by the equation of state. The local
acoustic pressure could well be the same
order of magnitude as the Bernoulli
pressure. Another objection to the pseudo-
sound o§cept is that one cannot argue that
the p\° field is rigorously compact like
the #H field.

The real challenge it seems is to de-
vise an experiment whereby the two parts
of the pressure field can be inferred. 1If
either the rotational or the irrotational
velocity field can be measured, then we
can make a clean separation of the pressure
with the present theory, at least if the
rotational flow is homentropic. From the
state equation (see the last of equation
(2.28)), the pressure and the irrotational
velocity field are sufficient to infer the
Bernoulli enthalpy field. Also, it follows
from (2.23) that a direct measurement of
the perturbation enthalpy (or pressure in
the homentropic case) and irrotational
velocity field is sufficient to determine
#/ and, hence, the source of sound. We
mentalist: how do you measure
1@l or rotational wveloeity
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comes the s
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tropy
Bernoul

enthalpy appears as a natural "link" between
the complicated dynamics of a turbulent flow
and the relatively simple potential acoustic
field.

The primary aim of the present work has
been to clarify some of the basic conceptual
problems that have plagued the modern
theories of sound in a real turbulent flow.
Two of these problems have been resolved in
our opinion. First, we have successfully
isolated the radiative and source components
of sound in the near field. Second, we
have rigorously localized the "source" of
aerodynamic sound, and without the aid of
asymptotic analysis. Finally, we have
shown that "source of sound" is synonymous
with "source of Bernoulli enthalpy." The
rotational and irrotational kinematics and
the thermodynamic entropy fluctuations of a
turbulent flow each produce a Bernoulli en-
thalpy field that in turn produces radiative
sound. The process of vorticity transport
plays a secondary role in sound nroduction
as long as the basic turbulent flow is
passive to the overall sound field.
Vorticity transport is, however, an im-
portant element of the sound interaction
problem (see below, Section IV).

In our presentation of the "general
theory of sound" we have stopped short of
the mark - the computational problem of
sound production lies ahead. We must carry
out the necessary statistical analyses
within the framework of our new theory ar
couple this to a "suitable" model of turbu-
lent flow. The successful invariant turbu-
lent model developed by Donald i g
(17,18,19) over th
provide the basic
the source of Bernoul
mately the radis

oped +hat real
1oped that real
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production can be
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where ¥~ is the Bernoulli enthalpy defect
and u(y) 4s the shear defect velocity;

s BT
u(y) = U(y) - v il

L

where U(y) 1is the total mean velocity
profile, and Ve 1s the constant streaming
velocity at <« . Since the flow is two-
dimensional, it is convenient to introduce
a stream function for the rotational ve-
loeity field; l.e.,

A ay 2=k ol
u 3y v e (4.5)
so that 2
VoY = - we (4.6)

where w” 1s the single component of the
perturbation vorticity. We emphasize that

¢ and the Bernoulli enthalpy defect, & ~ ,
must vanish when «” vanishes (see (L.g )i
With the foregoing definitions it is a
straight forward task to derive the follow-
ing interaction equations:
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(4.8)
2 2o 3% o _ -39 ~g2
é%‘v TS et 1 Iy " U'v-e (4.9

where we have dropped the prime on pertur-
bation quantities. The pressure is given
by the linear relation

@m¢
- C —_— u
pR=Py b T5 T P (4.10)

and the convective derivatives are,
respectively,

2 = 3__ 3_ l 1

SK=x* Uy ) == (4.11)
and gam " g

g:? = W"‘ Vm 57 (4.12)

In the absence of a shear flow, the
incident sound field (assumed to be given)
is governed by the homogenous form of (4.7)
and the pressure 1s given by the first term
in (4.10). The Bernoulli enthalpy defect
and the stream function are identically
zero., If the shear flow is suddenly
"turned on" we interpret the right-hand
side of (4.8) and (4.9) as interactive
source terms for ¢ and @& . The last
equation shows how the sound field generates
a perturbation ¢ fleld that, in turn,
generates a Bernoulli & field via (4.8).
In addition, the sound field generates
Bernoulli enthalpy directly via the first
and last terms in (4.8). For strong shear

flows, we note that the last
equations (4.8) and (4.9) is
magnitude smaller (with resp
layer thickness) than the lead
These terms represent the dir
of the compressibility of the
with the mean flow.
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vanish at the two edges of the jet. We
relax this condition slightly because we
later consider a Gaussian velocity profile.
Therefore, we solve (4.15) with the Green's
function that decays exponentially on the
scale of the incident wave number k out-
side the jet. After a single integration

by parts, the final result for the Bernoullil

enthalpy profile becomes,

Holy) = 0 2(k - 1z)e‘ky:£ o~ k=1200G 0y an

Now consider the Gaussian profile

S (4.17)

U(y) = u
(¥) = ug
where u, 1is the centerline jet velocity.
The half-profile and its first derivative
are plotted in Fig. 3. Also, we define the
normalized variables

K = kb c X = 28

Z. = Y8 (4.18)

Then, the normalized Bernoulli enthalpy
profile becomes

* > #H(82)
ol lellonic i oy
(¢] o

e

i e e
erfe (z) = i—-‘[ e dt %20
i

is the complementary error function. Note
that the source amplitude is linearly pro-
portional to u and § .

gnore the (admittedly important)
f 1 the wave equation
(4.7), we can write down at once the
formula for the transmitted and reflected
waves. We have
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5. The familiar problem of two-dimensional 4.
sound interacting with a parallel shear

flow is formulated in terms of the ¢ and

&4y fields and a stieam function to charac-
terize the perturbation vorticity. Radi-
ative sound interacting with the mean flow
shear and curvature produces perturbation
vorticity and a resultant Bernoulli field. 5.
The vertical component of the sound field

also interacts with the mean shear directly

to produce a Bernoulli field. Also, the
compressibility of the sound field is ampli-
fied by the shear defect velocity but, in
general, the source will be weaker than

either of those due to mean shear. 6.

6. Numerical results are presented for the
case of a plane sound wave impinging on a
two-dimensional Gaussian jet. The i
Bernoulli enthalpy profile has the appear-

ance of a dipole at low angles of incidence

and a monopole at large angles.

7. The theory we have developed is not
restricted to the study of acoustics. The

¢ field describes the steady as well as

the nonsteady potential flow. Thus, the 9.
general theory can be used to study a

variety of potential vorticity interaction
problems. It is hoped that specific re-

Sults in this direction can be presented in

the near future. 1ML

Epilogue

We have often heard the remark that
"one cannot understand fluid mechanics with-
out a working knowledge of the concept of
vorticity." In conclusion, we offer the
paraphrase, "One cannot understand the theory
of sound in a rotational medium without a 11
working knowledge of the concept of :
Bernoulli enthalpy."
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